Photograph

Hannes Meinlschmidt

Assistant Professor (W1) for Applied Analysis
FAU Erlangen-Nürnberg, Department of Mathematics
Chair for Dynamics, Control, Machine Learning and Numerics - Alexander von Humboldt Professorship

Office 03.330 @ Cauerstraße 11, 91058 Erlangen (Germany)
Mail meinlschmidt (AT) math.fau.de
☎ +49 9131 85-67128
ORCID id https://orcid.org/0000-0002-5874-8017

Research interests: Problems at the intersection of (optimal) control and optimization with the analysis of PDEs. This includes regularization aspects on the optimization side and regularity theory for elliptic and parabolic evolution equations on the analysis side. Motivated mostly by optimal control problems subject to strongly nonlinear (coupled systems of) time-dependent PDEs, or real-world applications with nonsmooth data.

CV: Diploma (Oct 2011) and PhD (Mar 2017) at TU Darmstadt, Germany, PhD supervisor Stefan Ulbrich. Moved to RICAM in Linz, Austria, for a PostDoc position, group of Karl Kunisch, in Sept 2017. Since Mar 2021, Assistant Professor (W1, 3+3y) at the AvH-chair of Enrique Zuazua at FAU Erlangen-Nürnberg, Germany. Full scientific CV here.

Publications:

[15]
Fabian Hoppe, Hannes Meinlschmidt, and Ira Neitzel. Global-in-time solutions and hölder continuity for quasilinear parabolic pdes with mixed boundary conditions in the bessel dual scale. Evol. Equ. Control Theory, 2024. Early access. (doi:10.3934/eect.2024025)
[14]
Robert Haller, Hannes Meinlschmidt, and Joachim Rehberg. Hölder regularity for domains of fractional powers of elliptic operators with mixed boundary conditions. Pure and Applied Functional Analysis, 2023. Accepted. (preprint)
[13]
Hannes Meinlschmidt. Nonautonomous maximal parabolic regularity for nonsmooth quasilinear parabolic systems. Submitted, arXiv:2312.13852, 2023.
[12]
Hannes Meinlschmidt, Meike Sons, and Mark Stemmler. A variational approach to Continuous Time Dynamic Models. Accepted, 2023. (preprint)
[11]
Hannes Meinlschmidt and Joachim Rehberg. Extrapolated elliptic regularity and application to the van Roosbroeck system of semiconductor equations. J. Differ. Equ., 280:375–404, 2021. (preprint) (doi:10.1016/j.jde.2021.01.032)
[10]
Ralph Chill, Hannes Meinlschmidt, and Joachim Rehberg. On the numerical range of second-order elliptic operators with mixed boundary conditions in Lp. J. Evol. Equ., 2020. (preprint) (doi:10.1007/s00028-020-00642-6)
[9]
Karl Kunisch and Hannes Meinlschmidt. Optimal control of an energy-critical semilinear wave equation in 3D with spatially integrated control constraints. J. Math. Pures Appl., 138:46–87, 2020. (preprint) (doi:10.1016/j.matpur.2020.03.006)
[8]
Hannes Meinlschmidt, Christian Meyer, and Stephan Walther. Optimal control of an abstract evolution variational inequality with application in homogenized plasticity. J. Nonsmooth Anal. Optim., 2020. (doi:10.46298/jnsao-2020-5800)
[7]
Hannes Meinlschmidt, Christian Meyer, and Joachim Rehberg. Regularization for optimal control problems associated to nonlinear evolution equations. J. Convex Anal., 27(2):443–485, 2019. (preprint)
[6]
Robert Haller-Dintelmann, Hannes Meinlschmidt, and Winnifried Wollner. Higher regularity for solutions to elliptic systems in divergence form subject to mixed boundary conditions. Ann. di Mat. Pura ed Appl., 198(4):1227–1241, 2018. (preprint) (doi:10.1007/s10231-018-0818-9)
[5]
Dirk Horstmann, Hannes Meinlschmidt, and Joachim Rehberg. The full Keller–Segel model is well-posed on nonsmooth domains. Nonlinearity, 31:1560–1592, 2018. (preprint) (doi:10.1088/1361-6544/aaa2e1)
[4]
Hannes Meinlschmidt. Analysis and Optimal Control of Quasilinear Parabolic Evolution Equations in Divergence Form on Rough Domains. sierke Verlag, Göttingen, 2017. PhD thesis, TU Darmstadt.
[3]
Hannes Meinlschmidt, Christian Meyer, and Joachim Rehberg. Optimal control of the Thermistor Problem in three spatial dimensions, part 1: Existence of optimal solutions. SIAM J. Control Optim., 55(5):2876–2904, 2017. (preprint) (doi:10.1137/16M1072644)
[2]
Hannes Meinlschmidt, Christian Meyer, and Joachim Rehberg. Optimal control of the Thermistor Problem in three spatial dimensions, part 2: Optimality conditions. SIAM J. Control Optim., 55(4):2368–2392, 2017. (preprint) (doi:10.1137/16M1072656)
[1]
Hannes Meinlschmidt and Joachim Rehberg. Hölder-estimates for non-autonomous parabolic problems with rough data. Evol. Equ. Control Theory, 5(1):147–184, 2016. (preprint) (doi:10.3934/eect.2016.5.147)

Teaching:

FAU Erlangen-Nürnberg:
Summer 2024
Numerik Optimaler Steuerungen (Numerics of Optimal Control) (→ StudOn)
Winter 2023/24
Optimization with Partial Differential Equations (Lecture notes) (→ StudOn)
Advanced Algorithms in Nonlinear Optimization (→ StudOn)
Seminar: Mixed topics in Nonlinear Optimization (→ StudOn)
Summer 2023
Numerik Optimaler Steuerungen (→ StudOn)
Seminar: Regular Lagrangian Flow and Transport Equations (→ StudOn)
Winter 2022/23
Optimization with Partial Differential Equations (Lecture notes) (→ StudOn)
Seminar: Interpolation Theory and Function Spaces (→ StudOn)
Summer 2022
Partielle Differentialgleichungen 2 (→ StudOn)
Winter 2021/22
Partielle Differentialgleichungen 1 (Lecture notes in German) (→ StudOn)
Summer 2021
A Primer on Functional-Analytic Methods for PDEs (Lecture notes) (→ StudOn)
Seminar: Evolution Equations (→ StudOn)
JKU Linz:
Winter 2020/21
Optimization in Function Space (→ Lecture page)
TU Darmstadt:
Summer 2017
Optimization in Function Space (→ Moodle)

Other things of interest:

Valid XHTML 1.0!     Valid CSS!